On subgroup perfect codes in Cayley graphs
نویسندگان
چکیده
A perfect code in a graph ?=(V,E) is subset C of V such that no two vertices are adjacent and every vertex V?C to exactly one C. subgroup H group G called if there exists Cayley which admits as code. Equivalently, an inverse-closed containing the identity element (A,H) tiling sense can be uniquely expressed product H. In this paper we obtain multiple results on codes finite groups, including few necessary sufficient conditions for code, involving 2-subgroups study codes, several metabelian generalized dihedral nilpotent groups 2-groups.
منابع مشابه
perfect state transfer in unitary cayley graphs over local rings
in this work, using eigenvalues and eigenvectors of unitary cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing pst occurring in its unitary cayley graph. moreover, we have some developments when $r$ is a product of local rings.
متن کاملPerfect codes in Doob graphs
We study 1-perfect codes in Doob graphsD(m,n). We show that such codes that are linear over GR(4) exist if and only if n = (4γ+δ−1)/3 andm = (4γ+2δ−4γ+δ)/6 for some integers γ ≥ 0 and δ > 0. We also prove necessary conditions on (m,n) for 1-perfect codes that are linear over Z4 (we call such codes additive) to exist in D(m,n) graphs; for some of these parameters, we show the existence of codes....
متن کاملPerfect codes in circulant graphs
A perfect code in a graph Γ = (V,E) is a subset C of V that is an independent set such that every vertex in V \ C is adjacent to exactly one vertex in C. A total perfect code in Γ is a subset C of V such that every vertex of V is adjacent to exactly one vertex in C. A perfect code in the Hamming graph H(n, q) agrees with a q-ary perfect 1-code of length n in the classical setting. A necessary a...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2021
ISSN: ['1095-9971', '0195-6698']
DOI: https://doi.org/10.1016/j.ejc.2020.103228